
Ну и все функции будут бесконечно диффиренцируемы там где нам надо.
В то время как большинство других простейших элементарных функций достаточно легко разлагаются в ряд Тейлора и закон по которому образуются члены разложения чаще всего не сложен и просто угадывается, для тангенса это не так. Хотя казалось бы, последний есть всего лишь отношение синуса к косинусу, функций с которыми не возникает никаких проблем при разложении. А между тем, чтобы указать вид общего члена для тангенса, нам придется начать несколько издалека и применять искусственные приемы. Но, на практике, зачастую и не требуется знать все кооффициенты ряда, достаточно лишь нескольких членов разложения. С такой постановкой задачи, студенты встречаются чаще всего. Так что, с нее-то мы и начнем. Чтобы особенно не утруждаться, разложение будем искать до кооффициента при пятой степени.
Первое, что здесь приходит в голову, это попытаться использовать формулу Тейлора непосредственно. Зачастую народ, попросту, не имеет никакого представления о других способах разложения в ряд. Кстати, наш семинарист по мат. анализу, на втором курсе, искал разложение именно так, хотя ничего плохого про него я сказать не могу, дядька умный, может он просто хотел показать свои способности во взятии производных. Как бы там ни было, а брать производные высоких порядков от тангенса удовольствие еще то, крайне муторное занятие, как раз из тех, что проще доверить машине, а не человеку. Но, нас, как настоящих спортсменов, интересует не результат, а процесс, и желательно, чтобы процесс был по проще. Производные такие (вычисленно в системе maxima):






Упростить здесь можно вот что, замечаем, что





Разложение, понятное дело, получается тем же самым.
О другом способе разложения в ряд я узнал непосредственно на экзамене по мат. анализу и за незнание этого метода я тогда получил хор. вместо отл.-а. Смысл метода состоит в том, что нам известно разложение в ряд и синуса и косинуса, а так же функции



Следующий способ, это вариант метода неопределенных кооффициентов. Поставим для начала вопрос, а что нам вообще известно про тангенс из того, что может помочь нам построить разложение, так сказать a priori. Самым важным, здесь является то, что тангенс функция нечетная, а следовательно все кооффициенты при четных степенях равны нулю, иными словами, нахождение половины кооффициентов не требуется . Тогда можно написать







Четвертый метод, также является методом неопределенных кооффициентов, но для него нам не потребуется разложение каких-либо иных функций. Мы рассмотрим диффиринциальное уравнение для тангенса. Выше мы видели, что производная от тангенса может быть выражена как функция от тангенса


Эти методы не в пример проще первых двух, но найти выражения для общего члена ряда таким образом не выйдет, а хотелось бы. Как я и говорил в начале, начать придется издалека (я буду следовать учебнику Куранта). Начнем мы с разложения в ряд функции



Изначально эти числа были найдены Яковом Бернулли при нахождении сумм m-тых степеней натуральных чисел


Но вернемся к разложению дроби. Раскладывая експоненту, вычитая единицу и деля на "x", мы, в конце концов, получим





















Сомнительно, чтобы кто-то непосредственно из этой формулы стал вычислять кооффициенты разложения, но тем не мение, теперь мы знаем общий вид членов разложения и почему они именно такие.